4.2 Adaptive Learning
The Adaptive Learning system represents the intelligence core of our Neural Snake AI, implementing sophisticated learning algorithms that enable the snake to improve its performance continuously through experience and pattern recognition.
4.2.1 Learning Architecture
graph TD
A[Input Layer] -->|Environmental Data| B[Pattern Recognition]
B -->|Processed Patterns| C[Decision Making]
C -->|Actions| D[Feedback Loop]
D -->|Performance Data| E[Learning Adjustment]
E -->|Updated Weights| A
F[Experience Buffer] -->|Historical Data| B
D -->|New Experiences| F4.2.2 Pattern Recognition System
class PatternRecognition {
constructor(config) {
this.patternMemory = new CircularBuffer(config.memorySize);
this.patternThreshold = config.threshold;
this.learningRate = config.learningRate;
}
// Identify patterns in movement sequences
identifyPatterns(movements) {
const patterns = this.extractPatterns(movements);
const significantPatterns = this.filterSignificantPatterns(patterns);
return this.rankPatterns(significantPatterns);
}
// Extract movement patterns
extractPatterns(movements, windowSize = 5) {
const patterns = [];
for (let i = 0; i <= movements.length - windowSize; i++) {
const pattern = movements.slice(i, i + windowSize);
const result = this.analyzePattern(pattern);
patterns.push(result);
}
return patterns;
}
// Analyze pattern effectiveness
analyzePattern(pattern) {
return {
sequence: pattern,
score: this.calculatePatternScore(pattern),
frequency: this.getPatternFrequency(pattern),
success_rate: this.calculateSuccessRate(pattern)
};
}
}4.2.3 Learning Algorithm
class AdaptiveLearning {
constructor(config) {
this.network = new NeuralNetwork(config.networkStructure);
this.experienceBuffer = new ExperienceBuffer(config.bufferSize);
this.learningRate = config.learningRate;
}
// Main learning loop
async learn(gameState) {
const experience = this.gatherExperience(gameState);
this.experienceBuffer.add(experience);
if (this.shouldUpdate()) {
const batch = this.experienceBuffer.sampleBatch();
await this.updateNetwork(batch);
}
}
// Gather experience from current game state
gatherExperience(gameState) {
return {
state: this.preprocessState(gameState),
action: gameState.lastAction,
reward: this.calculateReward(gameState),
nextState: this.predictNextState(gameState)
};
}
// Update neural network weights
async updateNetwork(batch) {
const targets = this.calculateTargets(batch);
const loss = await this.network.train(batch.states, targets);
this.adjustLearningRate(loss);
return loss;
}
}4.2.4 Dynamic Difficulty Adjustment
class DifficultyAdjuster {
constructor(config) {
this.metrics = new PerformanceMetrics();
this.adjustmentRate = config.adjustmentRate;
this.thresholds = config.thresholds;
}
// Adjust difficulty based on performance
adjustDifficulty(performance) {
const currentLevel = this.assessPerformance(performance);
const adjustment = this.calculateAdjustment(currentLevel);
return this.applyAdjustment(adjustment);
}
// Calculate performance metrics
assessPerformance(data) {
return {
averageScore: this.metrics.calculateAverageScore(data),
survivalTime: this.metrics.calculateSurvivalTime(data),
efficiencyRate: this.metrics.calculateEfficiencyRate(data)
};
}
// Generate difficulty parameters
generateParameters(level) {
return {
speed: this.calculateSpeed(level),
reactionTime: this.calculateReactionTime(level),
patternComplexity: this.calculateComplexity(level)
};
}
}4.2.5 Experience Management
class ExperienceBuffer {
constructor(maxSize) {
this.buffer = new CircularBuffer(maxSize);
this.priorityQueue = new PriorityQueue();
}
// Add new experience
add(experience) {
const priority = this.calculatePriority(experience);
this.buffer.push(experience);
this.priorityQueue.enqueue(experience, priority);
}
// Sample batch of experiences
sampleBatch(batchSize = 32) {
const batch = [];
const priorities = [];
while (batch.length < batchSize) {
const experience = this.priorityQueue.dequeue();
if (experience) {
batch.push(experience);
priorities.push(experience.priority);
}
}
return { batch, priorities };
}
// Calculate experience priority
calculatePriority(experience) {
const reward = experience.reward;
const novelty = this.calculateNovelty(experience);
const rarity = this.calculateRarity(experience);
return (reward * 0.4 + novelty * 0.3 + rarity * 0.3);
}
}4.2.6 Performance Analysis
class PerformanceAnalyzer {
constructor() {
this.metrics = {
scores: new MovingAverage(100),
survival: new MovingAverage(100),
efficiency: new MovingAverage(100)
};
}
// Analyze performance trends
analyzeTrends(data) {
const trends = {
score: this.analyzeTrend(data.scores),
survival: this.analyzeTrend(data.survival),
efficiency: this.analyzeTrend(data.efficiency)
};
return {
trends,
recommendations: this.generateRecommendations(trends)
};
}
// Generate improvement recommendations
generateRecommendations(trends) {
const recommendations = [];
if (trends.score.slope < 0) {
recommendations.push({
aspect: 'scoring',
suggestion: 'Focus on food collection efficiency',
priority: 'high'
});
}
if (trends.survival.slope < 0) {
recommendations.push({
aspect: 'survival',
suggestion: 'Improve collision avoidance',
priority: 'high'
});
}
return recommendations;
}
}4.2.7 Optimization Techniques
Memory Optimization
Experience replay buffer
Priority-based sampling
Efficient state representation
Learning Optimization
Batch normalization
Gradient clipping
Learning rate scheduling
Performance Optimization
Parallel processing
GPU acceleration
Asynchronous updates
The Adaptive Learning system continuously evolves and improves the snake's behavior through sophisticated pattern recognition and learning algorithms, creating an increasingly challenging and engaging experience for users.